TEXTBOOK OF MEDICAL PHYSIOLOGY

Chapter 37:

Platelets
Hemostasis and Blood Coagulation
Presented by Dr. Diksha Yadav

THIRTEENTH EDITION

Hemostasis: Prevention of Blood Loss

- Vascular constriction
- Formation of a platelet plug
- Formation of a blood clot
- Healing of vascular damage ± re-canalization

Vascular Constriction

- Myogenic spasm
- Local autocoid factors from damaged tissues and platelets
- Nervous reflexes
- Smaller vessels: thromboxane A₂ released by platelets

Platelets (Thrombocytes)

- 1- 4 µm discs
- Released by fragmentation of megakaryocytes
- 150-300,000 per μL
- Half-life in blood of 8-12 days

Platelet Functions

- Contractile capabilities
 - actin, myosin, thrombosthenin
- Residual ER and Golgi
 - synthesize enzymes, prostaglandins, fibrinstabilizing factor, PDGF, store Ca⁺⁺
- Mitochondria / enzymes
 - produce ATP, ADP

Platelet Membranes

- Surface glycoprotein
 - Repels intact endothelium
 - Adheres to injured endothelium and exposed collagen
- Membrane phospholipids
 - Activate blood clotting

Formation of the Platelet Plug

- Contact with damaged endothelium
 - Assume irregular forms
 - Contract and release granules (ADP, thromboxane A₂)
- Adhere to collagen and vWF
- Other platelets accumulate, adhere, and contract, form plug, initiate clotting
- Very low platelets → petechaiae, bleeding gums

Platelet Plug

Figs. 7.15a and 7.14b, Stevens & Lowe Human Histology, 4^{th} edition

Clot Formation and Progression

- Begins in 15- 20 seconds in severe vascular trauma
- Occlusive clot within 3-6 minutes unless very large vascular defect
- 20-60 minutes: Clot retraction
- 1-2 weeks
 - Invasion by fibroblasts
 - Organization into fibrous tissue

Key Steps in Blood Clotting

Effector Proteins for Clotting

Prothrombin

- α 2 globulin, MW 68,700; 15 mg/dl in plasma
- Vitamin K-dependent synthesis in liver
- Cleaved by PT activator to thrombin, MW 33,700

Fibrinogen

- MW 340,000; 100-700 mg/dl in plasma
- Synthesized in the liver (acute phase reactant)
- Usually intravascular; can extravasate with increased vascular permeability

Fibrin Production

- Thrombin (weak protease) cleaves four small peptides from fibrinogen
 - → fibrin monomer → spontaneous polymerization
- Long fibers form clot reticulum
- Fibrin stabilizing factor
 - In plasma and released from platelets
 - Activated by thrombin
 - Covalent cross-linking of fibrin monomers and adjacent fibrin fibers

Clot Extension

- Thrombin is bound to platelets and trapped in the clot
- Can act on prothrombin to generate more thrombin (positive feedback)
- Thrombin also produces more prothrombin activator by acting on other clotting factors
- Additional fibrin monomers and polymers are generated at the periphery of the clot

Clot Retraction

- Begins within 20-60 minutes
- Fibrin binds to damaged vessel wall
- Platelets bind to multiple fibrin fibers
 - contract via actin, myosin, thrombosthenin
- Clot tightens, expressing serum, and closing the vascular defect

Generating Prothrombin Activator

- Two pathways
 - Extrinsic pathway Trauma to vessel wall and adjacent tissues
 - Intrinsic pathway Trauma to the blood or exposure of the blood to collagen
- Both pathways involve "clotting factors"—mostly inactive proteases that are activated in cascades

Extrinsic Pathway of Blood Clotting

Intrinsic Pathway of Blood Clotting

Synergy between the Intrinsic and Extrinsic Pathways

- Tissue injury...
 - Tissue factor activates the Extrinsic Pathway
 - Exposure of Factor XII and platelets to collagen activates the Intrinsic Pathway
- Extrinsic pathway can be explosive, with clotting in < 15 seconds
- The Intrinsic pathway is slower
 - \rightarrow 1 6 minutes

Prevention of Clotting

- Smoothness of the endothelial surface
- Mucopolysaccharide coating (glycocalyx) repels platelets and clotting factors
- Thrombomodulin bound to endothelium binds (competes for) thrombin
- Thrombin-thrombomodulin activates
 Protein C→ inactivates factors V and VIII
- Damage to glycocalyx activates factor XII, platelets (intrinsic pathway). If collagen is exposed→ even more robust

Negative Feedback

- Fibrin fibers bind 85-90% of thrombin and localize it to the clot
- Antithrombin III combines with the remainder and inactivates it over 12-20 minutes

Heparin

- Physiologically, availability is limited
- Used therapeutically
- Highly negatively charged
- Binds anti-thrombin III and increases its effectiveness 100- to 1000-fold
- Heparin-antithrombin III removes free thrombin from the blood almost instantly
- Also removes XIIa, XIa, Xa, and IXa
- Mast cells, basophils particularly abundant in pericapillary regions of liver and lung

Clot Lysis

- Plasminogen is trapped in the clot
- Over several days, injured tissues release tissue plasminogen activator (tPA)
- Plasminogen is activated to plasmin, a protease resembling trypsin
- Plasmin digests fibrin fibers and several other clotting factors
- Often results in re-opening repaired small blood vessels

Causes of Excessive Bleeding

- Hepatocellular disease
- Vitamin K deficiency
- Hemophilia
- Low platelet count (thrombocytopenia)

Vitamin K Deficiency

- Essential to carboxylate glutamic acid in five important clotting factors:
 - prothrombin and factors VII, IX, X, and protein C
- In this process vitamin K is oxidized and inactivated
- Vitamin K epoxide reductase complex 1 (VKOR c1) reduces vitamin K and reactivates it

Vitamin K

- Produced in the intestine by bacteria
- Fat-soluble: malabsorption of fats can lead to deficiency
- Lack of bile production or delivery can cause fat malabsorption and vitamin K deficiency
- In patients with liver or biliary disease, vitamin K can be injected 4-8 hours before surgery

Hemophilia

- Hemophilia A Deficiency of factor VIII
 - 85% of hemophilia cases
 - 1 / 10,000 males
- Hemophilia B Deficiency of factor IX
 - 15% of cases
 - About 1 / 60,000 males
- Both impair Intrinsic Pathway activation
- Both genes are on the X chromosome (males only get one copy)
- Clinically: Bleeding after minor trauma

Factor VIII Deficiency

- Factor VIII has two components...
 - Large: MW > 10⁶
 - Small: MW ~ 230,000
- Deficiency of the small component causes hemophilia A
 - → treat bleeding with factor VIII replacement
- Deficiency of the large component causes von Willebrand disease (resembles decreased platelet function)

Thrombocytopenia

- Low numbers of platelets
- Bleeding from small venules or capillaries
- Petechaiae, thrombocytopenic purpura
- Often idiopathic
 - < 50,000 platelets / µL usually modest bleeding
 - < 10,000 platelets / µL life-threatening
- Treated with platelet infusions
 - → effective for 1 4 days each time

Thrombi and Emboli

- An abnormal clot is a thrombus
- When it floats it's an embolus
- Caused by...
 - Endothelial roughening (e.g. atherosclerosis)
 - Slow flow (e.g. prolonged air travel)
- Treatment...
 - tPA
 - Embolectomy

Pulmonary Embolus

- Usually from deep leg veins
- Part of thrombus disengages ~10% of the time
- Occludes pulmonary arteries potentially fatal
- tPA can be life-saving

Disseminated Intravascular Coagulation (DIC)

- Occurs in the setting of massive tissue damage or sepsis
- Wide-spread coagulation in small vessels
- Manifested as bleeding from multiple sites because of depletion of clotting factors

Clinically Useful Anticoagulants

Heparin

- Binds, potentiates antithrombin III
- Works rapidly, generally used acutely

Coumarins

- Inhibit VKOR c1
- Deplete active vitamin K → deplete active prothrombin, factors VII, IX, X
- Slower acting (days); used chronically
- Over-anticoagulation Treat with FFP and vitamin K

In vitro Anti-coagulation

- Siliconized containers prevent activation of factor VII and platelets
- Heparin used in blood collection, heart-lung and kidney machines
- Calcium chelators (citrate, EDTA) used in blood collection, blood storage

Blood Coagulation Tests

- Bleeding Time (from small cut)
 - normally 1 6 minutes
 - Largely reflects platelet function
- Clotting time
 - Invert tube every 30 seconds
 - Normally 6 10 minutes
 - Not reproducible, generally not used

Prothrombin Time

- Add excess calcium and tissue factor to oxylated blood, measure time to clot
- Assesses Extrinsic and Common Pathways
- Usually about 12 seconds
- Tissue factor batches have to be standardized (activity expressed as "International Sensitivity Index (ISI)")

Prothrombin Concentration and Function

International Normalized Ratio (INR)

$$INR = \left(\frac{PT_{test}}{PT_{normal}}\right)^{IS}$$

- Normal INR: 0.9 1.3
- Therapeutic range: 2.0 3.0

Tests of Other Clotting Factors

- Mix the patient's plasma with a large excess of all needed components except the factor being tested
- Compare time to coagulation with that for pooled plasma of healthy volunteers