IR Spectroscopy:

Infrared (IR) spectroscopy instrumentation is designed to analyze the interaction between infrared radiation and a sample, providing information about molecular vibrations and chemical bonds.

IR Instrumentation:

IR INSTRUMENTATION

Priyamstuducentre.com

The main components of IR spectroscopy instrumentation include:

1. IR Radiation Source

- Produces infrared light, typically in the range of 4000–400 cm⁻¹ (mid-IR region).
- Common IR sources include:
 - Nernst Glower: A ceramic rod that emits IR radiation when heated.
 - o Globar Source: A silicon carbide rod that emits a continuous spectrum of IR light.
 - o Incandescent Lamps: Used in simpler instruments for near-IR spectroscopy.

2. Sample Holder

- Holds the sample in solid, liquid, or gaseous form.
 - o **Solid samples**: Prepared as KBr pellets or thin films.
 - Liquid samples: Placed in liquid cells with IR-transparent windows like NaCl or KBr.
 - o **Gas samples**: Contained in gas cells with a long path length to allow adequate absorption.

3. Monochromator

- Separates IR radiation into individual wavelengths or a narrow band.
 - o **Gratings**: Use diffraction to disperse wavelengths.
 - o **Prisms**: Made from materials like NaCl or KBr, suitable for IR light.
 - o Filters may also be used for simpler instruments.

4. Detectors

- Measure the intensity of IR radiation after it passes through the sample.
 - o **Thermal Detectors**: Measure changes in temperature due to absorbed IR radiation (e.g., thermocouples).
 - **Pyroelectric Detectors**: Use materials like lithium tantalate to detect changes in polarization.
 - o **Photoconductive Detectors**: Respond to changes in electrical conductivity caused by IR light (e.g., HgCdTe detectors).

5. Interferometer (in FTIR Instruments)

- Replaces the monochromator in modern Fourier Transform IR (FTIR) instruments.
 - o Uses a Michelson Interferometer to modulate IR light into an interferogram.
 - o A mathematical algorithm (Fourier Transform) converts the interferogram into a spectrum.

6. Data Processing System

- Converts the detector signal into a readable spectrum.
 - o Modern instruments include advanced software for spectral analysis, peak identification, and comparison with libraries.

Working Principle

- 1. Infrared light from the source passes through the sample.
- 2. The sample absorbs specific frequencies corresponding to its molecular vibrations.

- 3. The transmitted or reflected light is measured by the detector.
- 4. The resulting spectrum displays absorbance (or transmittance) as a function of wavelength or wavenumber.

Types of IR Spectrometers

- 1. **Dispersive IR Spectrometers**: Use monochromators for wavelength selection.
- 2. **Fourier Transform IR (FTIR) Spectrometers**: Provide high-resolution spectra using interferometry.

Applications:

- Identifying functional groups in organic compounds.
- Studying molecular structures and conformations.
- Quality control in pharmaceuticals and polymers.